ID:
135359
Tipo Insegnamento:
Opzionale
Durata (ore):
54
CFU:
6
SSD:
FISICA SPERIMENTALE
Url:
FISICA/PERCORSO COMUNE Anno: 1
Anno:
2024
Dati Generali
Periodo di attività
Secondo Semestre (24/02/2025 - 06/06/2025)
Syllabus
Obiettivi Formativi
L’obiettivo principale di questo corso e’ fornire conoscenze avanzate su tematiche di frontiera dell’astrofisica extra-galattica e della cosmologia moderna dal punto di vista delle osservazioni classiche e più recenti. Lo studente apprenderà lo stato attuale delle conoscenze sulla struttura ed evoluzione dell’Universo, acquisite con le facilities osservative più recenti da terra e dallo spazio, a varie lunghezze d’onda, attraverso metodologie e tecniche moderne.
Lo studente acquisirà conoscenze avanzate sulla fisica delle galassie, il ruolo della formazione stellare e della formazione buchi neri supermassicci nel processo di formazione ed evoluzione delle galassie e dei nuclei galattici attivi. Apprenderà i risultati più recenti sulla formazione ed evoluzione degli ammassi di galassie e della struttura a larga scala, della componente barionica e di materia oscura. Acquisirà altresì conoscenze sui metodi per la misura dei parametri cosmologici legati all’espansione e alla geometria dell’Universo, nell’ambito del modello LCDM basato sulla presenza di materia ed energia oscura.
Con tali conoscenze lo studente sarà in grado di comprendere la letteratura specialistica di astrofisica extra-galattica e cosmologia, ed acquisisce la capacità di lavorare su tematiche di frontiera in gruppi di ricerca e collaborazioni internazionali, ed in particolare la capacità di interpretare dati dalle survey piu’ recenti e di prossima generazione.
Lo studente acquisirà conoscenze avanzate sulla fisica delle galassie, il ruolo della formazione stellare e della formazione buchi neri supermassicci nel processo di formazione ed evoluzione delle galassie e dei nuclei galattici attivi. Apprenderà i risultati più recenti sulla formazione ed evoluzione degli ammassi di galassie e della struttura a larga scala, della componente barionica e di materia oscura. Acquisirà altresì conoscenze sui metodi per la misura dei parametri cosmologici legati all’espansione e alla geometria dell’Universo, nell’ambito del modello LCDM basato sulla presenza di materia ed energia oscura.
Con tali conoscenze lo studente sarà in grado di comprendere la letteratura specialistica di astrofisica extra-galattica e cosmologia, ed acquisisce la capacità di lavorare su tematiche di frontiera in gruppi di ricerca e collaborazioni internazionali, ed in particolare la capacità di interpretare dati dalle survey piu’ recenti e di prossima generazione.
Prerequisiti
Conoscenze base di meccanica classica, termodinamica, elettromagnetismo, relatività e meccanica quantistica. Elementi di astrofisica stellare e cosmologia acquisiti in corsi di laurea triennale. Fondamenti di relatività generale.
Metodi didattici
Lezioni teoriche con risoluzioni di problemi, coadiuvate da slides e appunti.
Verifica Apprendimento
Lo scopo della prova d’esame consiste nel verificare il livello di comprensione e approfondimento degli argomenti esposti durante il corso. L'esame orale, consiste di due o tre domande su aspetti fondamentali trattati nel corso, con approfondimento di un argomento a scelta dallo studente tra quelli trattati non in dettaglio nel corso, che deve essere presentato oralmente (opzionalmente con il supporto di slides).
L'esposizione dell'argomento di approfondimento permette di valutare le capacità dello studente di ricercare ed assimilare letteratura specializzata ed di esporre un problema astrofisico avanzato nel contesto del corso.
L'esposizione dell'argomento di approfondimento permette di valutare le capacità dello studente di ricercare ed assimilare letteratura specializzata ed di esporre un problema astrofisico avanzato nel contesto del corso.
Testi
Materiale on-line su Google Classroom (slides, referenze, appunti, esercizi con soluzioni).
Capitoli selezionati da:
P. Schneider: Extragalactic Astronomy and Cosmology, 2nd ed. Springer
L.S. Sparke & J.S. Gallagher, III: Galaxies in the Universe, ed. Cambridge
Mo, van den Bosch, White: Gal formation and evolution, ed. Cambridge
M. Longair: Galaxy Formation, ed. Springer
H. Bradt: Astrophysics Processes, ed. Cambridge
Capitoli selezionati da:
P. Schneider: Extragalactic Astronomy and Cosmology, 2nd ed. Springer
L.S. Sparke & J.S. Gallagher, III: Galaxies in the Universe, ed. Cambridge
Mo, van den Bosch, White: Gal formation and evolution, ed. Cambridge
M. Longair: Galaxy Formation, ed. Springer
H. Bradt: Astrophysics Processes, ed. Cambridge
Contenuti
Il corso prevede 54 ore di didattica con i seguenti contenuti specifici:
+Course Overview
- Recap of basic concepts in Astronomy to be used in the course:
- Photometric measurements, black body emission, the magnitude system
(apparent/absolute magnitude, distance modulus, colors)
- Distance scales: solar system, Milky Way, Local Group, Redshift, Hubble constant
+ Galactic Astrophysics
- Stellar populations, stellar spectra, HR diagram
- Initial Mass Function
- Stellar population synthesis models, star formation histories
- Passive evolution of stellar populations
- Photometric redshift technique
- Selection of high-z galaxies, drop-out technique (examples)
- Interstellar extinction and reddening
- Galaxy classification based on color and spectra and morphology
- SF-density relation and its reversal at high-redshift
- Spectral properties of galaxies of different types (SFR), from the optical to the far IR
- Parametrization/modeling of galaxy light profiles, bulges, and disks
+ Galaxy surveys
- Luminosity function: how to measure it and Schecter model, luminosity and space density
- Applications: deep fields, galaxy evolution, methodologies
- From the UV luminosity function at varying redshift to the star-formation rate density
- The role of HST and JWST in the search for the first galaxies and stars
- Survey strategies, depth vs survey and survey volume
- K-correction
+ Galaxy dynamics
- Rotation curves in disk galaxies: evidence of dark matter
- Derivation of V(R) for a luminous disk, softened isothermal sphere, and NFW profile
- HII neutral hydrogen maps and kinematics
- Spheroidal systems: (singular) isothermal sphere from hydrostatic equilibrium
- Velocity dispersion measurement and computation, mass estimate and DM evidence
- Fundamental plane for elliptical galaxies
+ Active Galactic Nuclei (AGN) and Super Massive Black Holes
- General observational properties (type I and type II), unified model
- Black holes: basic properties, BH spin, radius of the innermost stable circular orbit
- Accretion processes, efficiency, Eddington accretion, Eddington limit
- Accretion disk: simple model (Keplerian disks), temperature profile of the disk
- Accretion disk model: luminosity profile, emission “bumps” and spectral properties.
- Spectral Energy Distribution of a QSO
- Emission mechanisms from radio to X/gamma-ray
- Synchrotron and Inverse Compton
- AGN spectra in X-ray, emission processes (IC), relativistic Fe line, obscured AGN
- Sphere of influence of SMBH
- Evidence of SMBH in nearby galaxies
- Dynamical mass estimates of SMBH: Galactic center BH dynamical measurements
- Interferometric experiments: VLTI, Event Horizon Telescope
- SMBH growth, Eddington time, SMBH formation, most distant QSOs
+ AGN surveys
- Space density evolution of QSO, AGN evolution
- SMBH-galaxy connection, SMBH energetics, relation between BH mass and bulge mass
- Chandra and XMM deep surveys: X-ray source number counts
- AGN evolution and comparison with galaxy SF rate history
- X-ray background spectrum, population synthesis models
- SMBH relics from AGN evolution and local mass function of SMBHs
+ Clusters of galaxies
- General properties and observables, formation scenario
- Zwicky measurement and first DM evidence
- Bremsstrahlung emission, X-ray observations (imaging and spectra)
- Isothermal mass distributions and King models
- Gas density profile and X-ray luminosity of a cluster
- Distant X-ray clusters and proto-clusters
- Total hydrostatic mass and gas mass, baryonic vs DM mass
- Dynamical mass (Jeans equation)
- DM halo density profile, NFW parametrization
- Sunyaev-Zeldovich effect, Compton y parameter; cluster SZ surveys
+ Gravitational Lensing
- Historical notes
- Convergence, critical surface mass density, lensing potential
- Strong and weak lensing regime
- Effective refractive index for lensing (similarities with optical lenses), Shapiro delay
- Axisymmetric lenses, Einstein radius
- Convergence and shear matrices
- Magnification: critical lines and caustics; examples of multiple images formation
- Axisymmetric lenses: point mass, SIS and NIS mass distribution
- Time delay surface: SIS and NIS cases
- Observables and constraints from strong lensing
- Measuring H0 with time delay: lensed QSO and SN Refsdal
- Different methods to measure cluster masses; mass maps from strong lensing
- Weak lensing methodology
- Microlensing: applications in the Milky Way
- Bullet cluster: DM is not baryonic
- Other applications of gravitational lensing from cosmological scales to sub-halos
- Gravitational Lenses as cosmic telescopes: examples, advantages and challenges
+ Physical cosmology
- Measuring cosmological parameters: growth of perturbations, geometrical methods
- Recollection of Friedman equations from FRW metric: density parameters, expansion rate,
dark energy, acceleration and EoS parameter w
- Density evolution for RD, MD, w-dominated Universe
- Evolution of density perturbations in an FRW universe (perturbation of Euler/ Poisson eqs.)
- Equation of linear perturbations’ evolution. Generalization to relativistic fluid
- Perturbation growth in RD and MD Universe.
- Free streaming of DM particles (WDM vs CDM Universe)
- Power spectrum of density perturbations and correlation function
- Comoving horizon scale at equivalence and peak of PS
- Bias parameter
- Power spectrum normalization, sigma_8
- Baryonic Acoustic Oscillations (BAO)
- Spherical collapse model, virial radius and mass of halos
- Evolution of cluster abundance and dependence on cosmological parameters
- Cluster cosmology
- Omega_M from cluster baryon fraction
- Geometric constraints of cosmological parameters: D_A and D_L
- Standard rod: CMB, acoustic horizon scale
- Geometric constraints of cosmological parameters: BAO at different redshifts
- Age of the Universe: Cosmic chronometers
- Luminosity distance, Taylor expansion, deceleration parameter, Hubble diagram
- The distance ladder (geometric distance, cepheids, type-Ia SNe)
- Recap on geometrical and growth of perturbations methods to constrain cosmology
- Euclid mission
+Course Overview
- Recap of basic concepts in Astronomy to be used in the course:
- Photometric measurements, black body emission, the magnitude system
(apparent/absolute magnitude, distance modulus, colors)
- Distance scales: solar system, Milky Way, Local Group, Redshift, Hubble constant
+ Galactic Astrophysics
- Stellar populations, stellar spectra, HR diagram
- Initial Mass Function
- Stellar population synthesis models, star formation histories
- Passive evolution of stellar populations
- Photometric redshift technique
- Selection of high-z galaxies, drop-out technique (examples)
- Interstellar extinction and reddening
- Galaxy classification based on color and spectra and morphology
- SF-density relation and its reversal at high-redshift
- Spectral properties of galaxies of different types (SFR), from the optical to the far IR
- Parametrization/modeling of galaxy light profiles, bulges, and disks
+ Galaxy surveys
- Luminosity function: how to measure it and Schecter model, luminosity and space density
- Applications: deep fields, galaxy evolution, methodologies
- From the UV luminosity function at varying redshift to the star-formation rate density
- The role of HST and JWST in the search for the first galaxies and stars
- Survey strategies, depth vs survey and survey volume
- K-correction
+ Galaxy dynamics
- Rotation curves in disk galaxies: evidence of dark matter
- Derivation of V(R) for a luminous disk, softened isothermal sphere, and NFW profile
- HII neutral hydrogen maps and kinematics
- Spheroidal systems: (singular) isothermal sphere from hydrostatic equilibrium
- Velocity dispersion measurement and computation, mass estimate and DM evidence
- Fundamental plane for elliptical galaxies
+ Active Galactic Nuclei (AGN) and Super Massive Black Holes
- General observational properties (type I and type II), unified model
- Black holes: basic properties, BH spin, radius of the innermost stable circular orbit
- Accretion processes, efficiency, Eddington accretion, Eddington limit
- Accretion disk: simple model (Keplerian disks), temperature profile of the disk
- Accretion disk model: luminosity profile, emission “bumps” and spectral properties.
- Spectral Energy Distribution of a QSO
- Emission mechanisms from radio to X/gamma-ray
- Synchrotron and Inverse Compton
- AGN spectra in X-ray, emission processes (IC), relativistic Fe line, obscured AGN
- Sphere of influence of SMBH
- Evidence of SMBH in nearby galaxies
- Dynamical mass estimates of SMBH: Galactic center BH dynamical measurements
- Interferometric experiments: VLTI, Event Horizon Telescope
- SMBH growth, Eddington time, SMBH formation, most distant QSOs
+ AGN surveys
- Space density evolution of QSO, AGN evolution
- SMBH-galaxy connection, SMBH energetics, relation between BH mass and bulge mass
- Chandra and XMM deep surveys: X-ray source number counts
- AGN evolution and comparison with galaxy SF rate history
- X-ray background spectrum, population synthesis models
- SMBH relics from AGN evolution and local mass function of SMBHs
+ Clusters of galaxies
- General properties and observables, formation scenario
- Zwicky measurement and first DM evidence
- Bremsstrahlung emission, X-ray observations (imaging and spectra)
- Isothermal mass distributions and King models
- Gas density profile and X-ray luminosity of a cluster
- Distant X-ray clusters and proto-clusters
- Total hydrostatic mass and gas mass, baryonic vs DM mass
- Dynamical mass (Jeans equation)
- DM halo density profile, NFW parametrization
- Sunyaev-Zeldovich effect, Compton y parameter; cluster SZ surveys
+ Gravitational Lensing
- Historical notes
- Convergence, critical surface mass density, lensing potential
- Strong and weak lensing regime
- Effective refractive index for lensing (similarities with optical lenses), Shapiro delay
- Axisymmetric lenses, Einstein radius
- Convergence and shear matrices
- Magnification: critical lines and caustics; examples of multiple images formation
- Axisymmetric lenses: point mass, SIS and NIS mass distribution
- Time delay surface: SIS and NIS cases
- Observables and constraints from strong lensing
- Measuring H0 with time delay: lensed QSO and SN Refsdal
- Different methods to measure cluster masses; mass maps from strong lensing
- Weak lensing methodology
- Microlensing: applications in the Milky Way
- Bullet cluster: DM is not baryonic
- Other applications of gravitational lensing from cosmological scales to sub-halos
- Gravitational Lenses as cosmic telescopes: examples, advantages and challenges
+ Physical cosmology
- Measuring cosmological parameters: growth of perturbations, geometrical methods
- Recollection of Friedman equations from FRW metric: density parameters, expansion rate,
dark energy, acceleration and EoS parameter w
- Density evolution for RD, MD, w-dominated Universe
- Evolution of density perturbations in an FRW universe (perturbation of Euler/ Poisson eqs.)
- Equation of linear perturbations’ evolution. Generalization to relativistic fluid
- Perturbation growth in RD and MD Universe.
- Free streaming of DM particles (WDM vs CDM Universe)
- Power spectrum of density perturbations and correlation function
- Comoving horizon scale at equivalence and peak of PS
- Bias parameter
- Power spectrum normalization, sigma_8
- Baryonic Acoustic Oscillations (BAO)
- Spherical collapse model, virial radius and mass of halos
- Evolution of cluster abundance and dependence on cosmological parameters
- Cluster cosmology
- Omega_M from cluster baryon fraction
- Geometric constraints of cosmological parameters: D_A and D_L
- Standard rod: CMB, acoustic horizon scale
- Geometric constraints of cosmological parameters: BAO at different redshifts
- Age of the Universe: Cosmic chronometers
- Luminosity distance, Taylor expansion, deceleration parameter, Hubble diagram
- The distance ladder (geometric distance, cepheids, type-Ia SNe)
- Recap on geometrical and growth of perturbations methods to constrain cosmology
- Euclid mission
Lingua Insegnamento
Inglese
Corsi
Corsi
FISICA
Laurea Magistrale
2 anni
No Results Found